DAIMLERCHRYSLER

ETC Technology

DaimlerChrysler Services Mobility Management GmbH January 2005

Overview

- 1. Autonomous Toll Systems
- 2. German Toll Collect System Overview
- 3. German Toll Collect Status

1. Autonomous Toll Systems

Traffic Gridlock?

Traffic Management

Infrastructure Adaptions

Road Pricing

Two Options

Beacon/Booth

Autonomous

Reasons for using ETC Systems

- Private Road Owners
 - to get as much income as possible for refinancing of investments
 - to increase the throughput compared to manual tolling
 - to grant easy access an to increase user acceptance of tolled roads
- Public Authorities (Finance Ministries)
 - to get more income in comparison with flat rated vehicle taxes or toll stickers and to generate revenues on a pay-as-you-drive basis
 - to generate income from national and foreign vehicles
- Public Authorities (Transport Ministries)
 - to improve traffic flow on the existing road network by influencing driver behavior
 - to avoid traffic obstacles like toll plazas
 - to avoid traffic deviation to untolled roads

Key Factors Influencing ETC Architectures (Private Roads)

- Private road owners do not have access to any flat rated tax neither from trucks nor from passenger cars
- Typical private road owners hold only small parts of the total road network with high traffic volumes
- Private road owners levy tolls on all vehicles using their infrastructure
- Private road owners require
 - low-cost vehicle units
 - less flexibility for traffic management or extension of network
- Private road owners require features which beacon based ETC systems may provide

Key Factors Influencing ETC Architectures (Public Roads)

- Public authorities have the option to toll the whole road network
 - Diverse road types and classes in network
 - Diverse traffic volumes and
- Public authorities require
 - More tariff options (e.g. time of day based, congestion pricing)
 - Systems allowing extensions to other road and vehicle classes
 - Traffic management and public safety functions
 - \rightarrow

Public authorities will find that autonomous ETC systems will better serve their requirements especially in the long run

Key Features of Autonomous ETC Systems

- Complete set of tariff models including area pricing and time based pricing
- Easy extension of toll road network possible without additional infrastructure
- Very limited need for road side equipment
- High level of anonymity and data protection
- Significant cost reduction for on-board equipment expected
- On-board eqiuipment can be used for Telematics services (e.g. safety and productivity services)

The Future View: Advanced Features of Autonomous ETC Systems

- System supports multiple tariff models
 - Combination of distance based charging and area pricing
 - Vehicle Miles Traveled (VMT) approach supported
 - Fees adapted to time of day and traffic load on road network
- Very cost efficient and convenient on-board equipment available
 - Tolling application running on standard in-vehicle systems
 - Plug and play on-board equipment for retro-fit purposes
- Integration of Telematics services
 - Real time traffic information is gathered in the vehicles and reported to others
 - Inter-vehicle hazard warning implemented in large scale (Vehicle Infrastructure Integration)
 - Hazardous goods transports are monitored everywhere
 - Sensible locations (e.g. tunnels) are managed using slot allocation

1. Toll Collect - System Overview

ETC - Germany General Conditions

General conditions for ETC - Germany

- Replacement of Euro-vignette (time-depending toll)
- complex road net (13,000 km, more than 2,500 segments)
- high volume of traffic (approx. 1.4 Mio tolled vehicles)

Requirements of German Government

- PPP model: conception, implementation, operation
- levy of usage-depending toll
- for trucks $\geq 12t$
- dual system / non-discriminating for occasional users
- interoperability with toll systems of neighbourhood countries

Time schedule

- start of tender 07/2000 - first bid 01/2001

- start of operation 1 January 2005

- duration of concession 12 years

ETC - Germany Consortial Set-up

ETC Germany - System Components

Automated System

- installation of OBU, DSRC module and antenna through authorized service-partners in Germany and neighbouring countries
- equipment is free of charge (payment of a deposit)
- input of PIN / weight / no of axles / tour / account
- OBU recognizes autonomously by means of GPS data and road net whether the vehicle is on a toll road
- autonomous determination and storing of the toll
- autonomous sending of the charge-data to the toll collection center by GSM mobile communication

Booking System Manual Booking

- route booking at terminals near highways
- approx. 3,500 booking terminals in Germany and neighbouring countries
- indoor / outdoor terminals
- input of vehicle-data, route-data and time of use
- issueing of booking-receipt
- storing of the booking-date in the toll collection centre

Booking SystemInternet Booking

- registration and separate authorisation necessary
- access via user ID and password
- selection of language (English, German, French, Polish)
- input similar to booking terminal
- access to own registered vehicles
- printing of receipt with safety code (digital signature)

Enforcement

- without free flow interference
- 300 enforcement gantries
- enforcement gantries span the whole roadway
- Stationary Enforcement
 - based on Automated Enforcement
 - discovery of tolling / violating facts on highway site

Mobile Enforcement

- enforcement under free flow conditions,
- discovery of tolling / violating facts on highway site
- 300 Mobile Enforcement vehicles

Central Systems

Data management, Billing, User service Operating Data protection, Surveillance and others

User service

- verbal and written information regarding usage and billing
- service / call centre fax, e-mail, postal
- user service available daily 24 h

Data protection

 charging, storing, processing, transmission of data according to data protection laws e.g. cryptographic encoding of data

Surveillance

- transparency and trouble detection of ETC system
- improvement of efficiency / discovering of weaknesses

3. Toll Collect - Status

Status

- Toll Collect System has started successfully on January 1, 2005
 - System performance is very good
- User acceptance is good
 - Most users were well informed and prepared for the toll introduction
 - Some users "gambled" on successful system start and did not prepare themselves or their employees (no OBUs)
- Automatic booking most frequently used way to access the system
 - About 90% of all bookings done automatically
 - Toll Collect provided help to users with 5,000 booking assistants at strategic locations with terminal bookings

Usage Figures (1)

- Registered Companies
 - Currently 71,000 companies registered
 - + 6,000 since January 1
- On-board Units
 - 330,000 OBUs built into trucks
 - Number of orders has risen significantly since system start (currently 65,000 reservations)
- Bookings
 - 800,000 bookings per day (average)

Usage Figures (2)

- Non-conform users
 - First week: 8% of users failed to pay correct toll mainly in manual system
 - Second week: 3% non-conform users
 - Compared to phased out vignette system this is a huge success (about 20% of users failed to pay correctly or did not pay at all in the first month of operation)
- Money flow
 - First operational week (holiday) resulted in EUR 40m
 - Next weeks projected toll revenues at EUR 60-70m